Structure of A₂Ge₄O₉-Type Sodium Tetragermanate (Na₂Ge₄O₉) and Comparison with Other Alkali Germanate and Silicate Mixed Tetrahedral–Octahedral Framework Structures

M. E. Fleet¹ and S. Muthupari

Department of Earth Sciences, University of Western Ontario, London, Ontario N6A 5B7, Canada

Received December 4, 1997, in revised form March 16, 1998; accepted March 30, 1998

Long-standing uncertainty on the structure type of Na₂Ge₄O₉ has been resolved. Sodium tetragermanate has been grown by crystallization from a supercooled melt and its single-crystal X-ray structure has been determined (R = 0.022). Sodium tetragermanate is trigonal with a = 11.3234(12), c = 9.6817(9) Å, space group $P\overline{3}c1, Z = 6$, and $D_x = 4.451$ g cm⁻³. The structure is comprised of a mixed tetrahedral-octahedral framework with three-membered [Ge₃O₉] rings of GeO₄ tetrahedra interconnected by isolated GeO₆ octahedra via shared corners and is A_2 Ge₄O₉-type. Bond distances and angles for GeO₄ tetrahedra and GeO₆ octahedra are very similar to the corresponding values in the type structure of $K_2Ge_4O_9$, the two structures differing mainly in the accommodation of the smaller (medium-largesized) Na cation, which is now in a 5+2 coordination. The structure-composition relationships of wadeite-type, A_2 Ge₄O₉type, and Na₂Si₄O₉-type structures of germanates and silicates depend largely on the T-O distance and the size of the monovalent cation. We confirm that sodium tetragermanate is a metastable phase at all pressures up to 2 kbar, the stable assemblage for the Na₂Ge₄O₉ composition being sodium enneagermanate (Na₄Ge₉O₂₀) plus a more sodic phase. © 1998 Academic Press

INTRODUCTION

The structures of alkali germanates ($mNa_2O.nGeO_2$) with n > m tend to contain Ge in both octahedral and tetrahedral coordination and, therefore, are of particular interest as possible analogue structures for high-pressure silicates and silicate minerals in the Earth's mantle (1, 2). The large alkali–cation tetragermanates, tetrasilicates, and related compounds ($A_2BT_3O_9$, with A = K, Rb, Cs, and also Tl, Ag, B = Ge, Si, and also Ti, Sn, Zr, and T = Ge, Si) form mixed tetrahedral–octahedral framework structures in which three-membered [T_3O_9] rings of TO_4 tetrahedra are interconnected by isolated BO_6 octahedra via shared

¹To whom correspondence should be addressed. E-mail: mfleet@julian.uwo.ca.

corners (3–6). Three structure types are known: wadeite (K₂ZrSi₃O₉, 3; space group $P6_3/m$; Fig. 1a), that is favored by silicates, Tl₂TiGe₃O₉, Cs₂TiGe₃O₉, and Cs₂SnGe₃O₉; A_2 Ge₄O₉ (e.g., K₂Ge₄O₉, 4; space group P3c1; Fig. 1b) that is favored by other germanates; and Na₂Si₄O₉ (7; space group $P2_1/n$). The unit cells of the two germanate structure types are related by $a \approx a(A_2$ Ge₄O₉) $\approx a($ wadeite) $\sqrt{3}$; $c \approx c(A_2$ Ge₄O₉) $\approx c($ wadeite). In contrast, Li₂Ge₄O₉ and LiN-aGe₄O₉ have a structure based on crenulated [Ge₃O₉]_n chains of GeO₄ tetrahedra interconnected by GeO₆ octahedra (8, 9). Also, the structure of high-pressure Na₂Si₄O₉ has a nine-membered [Si₉O₂₇] ring of SiO₄ tetrahedra that is collapsed around and interconnected by SiO₆ octahedra (see Fig. 1c) (7).

The structure and phase stability of sodium tetragermanate (Na₂Ge₄O₉; a tetragermanate with a medium-largesized alkali cation) have been debated extensively (4, 10–17) and remain controversial. Early work (10, 12) suggested that $Na_2Ge_4O_9$ was isostructural with $K_2Ge_4O_9$ and $Rb_2Ge_4O_9$ and that the tetragermanates of Na, K, Rb, and Tl were perhaps wadeite-type (18). Single-crystal camera and powder X-ray diffraction observations on Na₂Ge₄O₉ pointed to the space group $P6_3/m$ rather than $P\overline{3}c1$ (14). In their discussion of the A_2 Ge₄O₉-type structure of $K_2Ge_4O_9$, Völlenkle and Wittmann (4) also assumed the space group of reference (14; $P6_3/m$) for Na₂Ge₄O₉, reporting that only tetragermanates of the large monovalent cations Rb, Tl, and Ag were isostructural with $K_2Ge_4O_9$. Subsequently, the wadeite structure was assigned to $Na_2Ge_4O_9$ (16) based on iterative refinement of positional parameters using 19 reflections of the powder X-ray diffraction pattern of reference (14).

Phase relations in the system Na_2O -GeO₂ at high GeO₂ content are complicated by the existence of two phases of similar composition; $Na_2Ge_4O_9$ and $Na_4Ge_9O_{20}$ (10–13, 15, 17; earlier work is reviewed in 15). The structure of sodium enneagermanate contains four-fold clusters of GeO₆ octahedra linked into columns by isolated GeO₄ tetrahedra

FIG. 1. Polyhedral representation of (a) wadeite-type structure of $K_2Si_4O_9$ (6), the GeO₆ octahedron is on unit-cell origin, (b) $A_2Ge_4O_9$ -type structure of $K_2Ge_4O_9$ (4), the Ge(1)O₆ octahedron is on the origin, (c) $Na_2Si_4O_9$ structure (7), with a single nine-membered ring of nonequivalent tetrahedra highlighted, and (d) $A_2Ge_4O_9$ -type structure of $Na_2Ge_4O_9$ (this study). Unit-cell outlines are indicated by broken lines.

and interconnected by spiral $[Ge_4O_{12}]_n$ chains of GeO_4 tetrahedra (19, 20). Sodium enneagermanate forms by hydrothermal reaction at 200°C and 12 bars (10, 21; see also 19), thermal decomposition of $Na_3HGe_7O_{16}(H_2O)_4$ in air at 600°C (10), crystallization of glass of composition $Na_2Ge_4O_9$ in air at all temperatures to the liquidus (10, 13), very slow cooling of melts in air to 600-700°C (12, 16), annealing Na₂Ge₄O₉ in air (10), crystallization using a sodium tungstate flux in air (20), and DTA experiments on sodium germanate glasses (17). It was earlier misidentified as a low-temperature polymorph of $Na_2Ge_4O_9$ (10–12). Sodium tetragermanate has been reported only from dry synthesis, e.g., slow cooling of melts of composition $Na_2Ge_4O_9$ in air to above 700°C (12, 16) and to an unspecified temperature (14), fusion of a stoichiometric mixture of GeO₂ and Na₂CO₃ at 900°C, and as an early product in the

crystallization of GeO_2 -rich glass (13, 17). Murty and Aguayo (13) questioned the existence of the tetragermanate phase, and Monnaye and Bouaziz (15) concluded that it is metastable at 1 bar.

We presently crystallize $Na_2Ge_4O_9$ from the melt, determine its crystal structure to be $A_2Ge_4O_9$ -type, and further investigate the stability of this enigmatic phase.

EXPERIMENTAL PROCEDURES

Crystal Structure of Sodium Tetragermanate

Crystals of sodium tetragermanate $(Na_2Ge_4O_9)$ were grown in a platinum dish from a 1.0 g mixture of high-purity GeO₂ and analytical grade Na₂CO₃. The mixture was melted at 1200°C and cooled at 100°C/h to 900°C, yielding a supercooled melt, which was removed from the furnace for a few minutes then reheated to 900°C and cooled at 10°C/h to 800°C. The products consisted of large hexagonal prismatic crystals of Na₂Ge₄O₉ (up to 0.5 mm in diameter and 8 mm in length) and minor glass. The crystals were characterized as Na₂Ge₄O₉ by powder X-ray diffraction, using a Rigaku powder diffractometer system and CuK α X-radiation, and petrographic microscopy (14). They were characterized as isostructural with K₂Ge₄O₉ using X-ray precession photography (space group $P\overline{3}c1$; 4).

Single-crystal measurements were made at room temperature and pressure with an Enraf–Nonius CAD-4F diffractometer and graphite-monochromatized MoK α Xradiation ($\lambda = 0.71069$ Å). Structure refinements closely followed earlier procedures (7, 20) and started with the positional parameters for the A_2 Ge₄O₉-type structure of K₂Ge₄O₉. Scattering factors for neutral atomic species and f', f'' were taken from (22). All computations were carried out with DATAP77 and LINEX77 (State University of New York at Buffalo). Results are summarized in Tables 1–4 and Figs. 1–3.

Sodium tetragermanate (Na₂Ge₄O₉) is trigonal with a = 11.3234(12), c = 9.6817(9) Å, V = 1075.1 (2) Å³, space group $P\overline{3}c1$ (No. 165), Z = 6, and $D_x = 4.451$ g cm⁻³. Three thousand and two reflections with indices $\pm h, \pm k, l$ and $2\theta \le 45^\circ$ and 3105 reflections with indices $h, k, \pm l$ and $45^{\circ} < 2\theta \le 75^{\circ}$ were measured in the ω -scan mode. Transmission factors varied from 0.114 for 100 to 0.250 for 10, 4, $\overline{11}$ (crystal volume = 1.92×10^{-3} mm³, $\mu = 168.9$ cm⁻¹). There were 1897 unique reflections, with 925 considered unobserved on the basis of $I < 3\sigma(I)$. All reflections systematically absent in space group $P\overline{3}c1$ had zero intensity using $I < 3\sigma(I)$. Refinement in $P\overline{3}c1$ converged to R = 0.0223, $R_{\rm w} = 0.0246$ (for reflections with $I \ge 3\sigma(I)$, S = 0.421, g = $0.93(2) \times 10^{-4}$, $\Delta \rho = -0.72 \text{ e}^{\text{A}^{-3}}$ near O(2) to $0.82 \text{ e}^{\text{A}^{-3}}$ near Ge(1)). All reflections were included in the refinement, but reflections with $I < 3\sigma(I)$ were given a low weight. The relatively low goodness-of-fit value (0.421) reflects crystal imperfection. Reflections with $I \ge 3\sigma(I)$ were assigned weights based on counting statistics. However, refinement with unit weights for these reflections resulted in the same structure (all parameters were unchanged within 1σ), and $R = 0.0223, R_w = 0.0254, \text{ and } S = 1.380.$

Experiments on the Stability of Sodium Tetragermanate

Various experiments were made with melts and glass of $Na_2Ge_4O_9$ bulk composition prepared as above. Experiments in air were made with platinum dishes or crimped platinum capsules. Melts were prepared at 1100°C, and glasses were prepared by air quenching either 1100°C melts or supercooled melts. Melts were cooled from 1100°C to 900, 800, and 700°C at 1–30°C/h, with annealing times of 0–24 h. In one experiment, the supercooled melt was re-

moved from the furnace at 800°C momentarily (~1 min) and then annealed for 2–3 min before quenching in air. Glass was annealed at 900°C for 30 min and 10 h, 800°C for 2 and 2.5 min and 15 h, 700°C for 168 h, and 500°C for 12 h, and cooled from 900 to 800°C at 10°C/h. Glass samples were either inserted in the furnace at the annealing temperature or heated at 100°C/h from room temperature to the annealing temperature. Crystalline Na₂Ge₄O₉, from previous experiments with melts supercooled to 700°C, was annealed at 700°C for 168 h, and was also hydrothermally annealed in a Tuttle-type bomb at 700°C and 2 kbar using a sealed gold capsule in order to contain the mixture of 0.05 g Na₂Ge₄O₉ and 0.10 g H₂O.

DISCUSSION

The $A_2Ge_4O_9$ -Type Structure of Sodium Tetragermanate

The close correspondence in unit-cell parameters, space group, positional parameters (Table 1), and bond distances and angles (Table 2) between $Na_2Ge_4O_9$ and $K_2Ge_4O_9$ (4) demonstrates unambiguously that Na₂Ge₄O₉ does indeed have the A_2 Ge₄O₉-type structure. All X-ray powder diffraction patterns of Na₂Ge₄O₉ presently synthesized were similar, albeit with some variation in the intensities of corresponding reflections, and revealed no evidence for a higher symmetry $(P6_3/m;$ derivative wadeite-type) polymorph. Previous assignments of space group $P6_3/m$ (14) and derivative wadeite-type structure for $Na_2Ge_4O_9$ (16) were tenuous. We show below that the wadeite-type structure is unsuitable for $A_2BT_3O_9$ compounds of Na and other medium-large- and medium-sized monovalent cations. Only one very weak reflection in the powder pattern of reference (14), 301 in Table 3, violates the condition limiting possible reflections in space group $P\overline{3}c1$ (*hh*0*l*, *l* = 2*n*; Miller–Bravais indices). The observed powder pattern from this earlier study otherwise corresponds closely to that calculated using the present structure parameters (Table 3), recognizing that the discrepancies in observed and calculated intensities for 002 and 004 are likely attributable to preferred orientation effects. The derivative wadeite-type structure of reference (16) does not reproduce the observed powder intensities very well, and observed and calculated intensities for three of the reflections used (110, 212, and 312) are in significant disagreement. However, we recognize that the present intersample variation in X-ray powder patterns of Na₂Ge₄ O_9 may signal transformation behavior in this compound.

Bond distances and angles for GeO_4 tetrahedra and GeO_6 octahedra in the tetrahedral-octahedral framework of $Na_2Ge_4O_9$ are very similar to the corresponding values in $K_2Ge_4O_9$ (Table 2). The essential difference in the two structures is in the accommodation of the smaller (medium-large-sized) Na cation, which is in a 5 + 2 coordination, with the 5 nearest-neighbor oxygens being in almost square

FIG. 2. Stereographic view of structure of sodium tetragermanate (Na₂Ge₄O₉), centred at 1/2,1/2,1/2, and showing unit-cell contents. *c*-axis vertical.

pyramidal configuration. The required small displacements of oxygen atoms have been made by crimping the tetrahedral-octahedral framework, i.e., by rotation of GeO₆ octahedra and GeO₄ tetrahedra (Fig. 1), as detailed below. The Ge-O-Ge bond angles in Na₂Ge₄O₉ are smaller than in $K_2Ge_4O_9$ by an average of 5.5°.

Alkali Tetragermanate and Tetrasilicate Framework Structures

As noted earlier (2), the factors that are important in tetrahedral (*TO*₄) framework structures (composition and stoichiometry, *T*–O bond distance and bond strength, size of large extra-framework cation) are also important in mixed tetrahedral–octahedral framework structures. In particular, accommodation of the large extra-framework cation is of prime importance in determining details of structural topology. The very large monovalent cations (K, Rb, Cs, Ag, and Tl, with effective ionic radii of ^[8]K- 1.51, ^[8]Rb- 1.61, ^[8]Cs- 1.74, ^[8]Ag- 1.28, and ^[8]Tl- 1.59 Å, respectively, for eight-fold coordination with oxygen; 23) prefer cavity posi-

As noted above, the three known structure types with the formula $A_2B[T_3O_9]$ are wadeite, $A_2Ge_4O_9$, and $Na_2Si_4O_9$. The wadeite-type and $A_2Ge_4O_9$ -type structures are both built of [(Ge/Si)₃O₉] three-membered tetrahedral ring units

Æ

O(3)

O(5)

Ge(4)

O(1)

Œ

O(4)

O(5)

O(4)

Ge(4)

Ge(3)

FIG. 3. Geometry of three-membered $[Ge_3O_9]$ ring of GeO_4 tetrahedra in (a) $Na_2Ge_4O_9$ and (b) $K_2Ge_4O_9$ (4). *c*-axis projection, bond distances are Å.

TABLE 1Positional and Isotropic Thermal Parameters (Ų) $(B_{eq} = \frac{4}{3} \sum_{i} \sum_{j} \beta_{ij} a_i \cdot a_j)$							
_	x	У	Ζ	B_{eq}			
Na(1)	0.0074(2)	0.3366(2)	0.4232(2)	1.87(3)			
Ge(1)	0.0	0.0	0.0	0.336(10)			
Ge(2)	0.33333	0.66667	0.44524(5)	0.394(8)			
Ge(3)	0.0	0.17951(4)	0.75	0.478(7)			
Ge(4)	0.14937(3)	0.49338(3)	0.70011(3)	0.410(5)			
O(1)	0.0	0.4935(3)	0.75	0.67(4)			
O(2)	0.0953(2)	0.1542(2)	0.8800(2)	0.56(3)			
O(3)	0.1004(2)	0.3245(2)	0.6468(2)	0.77(3)			
O(4)	0.2628(2)	0.5125(2)	0.8303(2)	0.70(3)			
O(5)	0.1768(2)	0.5921(3)	0.5540(2)	0.74(3)			

cross linked by (Ge/Si)O₆ octahedra. In the transverse (*c*-axis) direction, the octahedra share faces with interspersed unoccupied polyhedra, forming columns (Fig. 4). The principal topological difference between these two structures is the nature of the unoccupied polyhedron. In the wadeite-type structure, alternate octahedra along any column are contrarotated by 180° and the unoccupied polyhedron is a trigonal prism (Fig. 4a). Thus, the three-membered $[T_3O_9]$ ring has nearly ideal geometry, with the Ge cations

coplanar with the bridging oxygens and the nonbridging oxygens superimposed parallel to the *c*-axis. However, in the $A_2Ge_4O_9$ -type structure, the unoccupied polyhedron is an octahedron (Fig. 4b). The shared (triangular) octahedral faces, that are cross-linked by the [Ge₃O₉] units, are now contrarotated, causing the [Ge₃O₉] rings to be twisted.

In the high-pressure $K_2Si[Si_3O_9]$ wadeite-type structure (6), K is accommodated in a large cavity position with 3 + 3 + 3 coordination with oxygen, similar to its environment in tridymite-derivative tetrahedral aluminosilicate framework structures. If they existed, wadeite-structure tetragermanates would have an even larger cavity position, because of the longer Ge-O bond distances. In the A_2 Ge₄O₉-type structure, the twist deformation of the three-membered $[Ge_3O_9]$ ring reduces the size of the framework cavity and adds a degree of freedom to the distortion of the mixed tetrahedral-octahedral framework, permitting a wide range in size of large monovalent cations to be accommodated. In particular, to accommodate the smallersized Na cation in Na2Ge4O9, the Ge(1)O6 octahedra, which are on the origin of the unit cell, are contrarotated relative to the K₂Ge₄O₉ structure. This displacement rotates the cross-linking $Ge(3)O_4$ tetrahedron, twisting the three-membered $[Ge_3O_9]$ ring (Fig. 3), and drawing the columns of $Ge(1)O_6$ octahedra closer together. For alkali tetrasilicates, the [Si₃O₉] tetrahedral ring is too rigid to

 TABLE 2

 Selected Bond Distances (Å) and Angles (°) for Na2Ge4O9 and K2Ge4O9

Na–O(1) ^I		$2.584(3)^{a}$	2.826 ^b	Ge(2)–O(5)	× 3	$1.862(1)^{a}$	1.883 ^b
$Na-O(2)^{II}$		2.446(2)	2.753	$\langle \text{Ge}(2)-\text{O} \rangle$		1.870	1.880
Na-O(3)		2.442(2)	2.749	Ge(3)–O(2)	$\times 2$	1.754(2)	1.743
Na-O(3)III		2.733(2)	2.734	Ge(3)–O(3)	$\times 2$	1.792(2)	1.796
$Na-O(4)^{II}$		2.615(3)	2.839	$\langle \text{Ge}(3)-\text{O}\rangle$		1.773	1.769
Na-O(5)		2.847(3)	2.960	Ge(4)-O(1)		1.760(2)	1.767
$Na-O(5)^{I}$		2.595(3)	2.781	Ge(4)–O(3)		1.780(2)	1.786
$\langle Na-O \rangle$		2.609	2.806	Ge(4)–O(4)		1.734(1)	1.735
$Ge(1)-O(2)^{IV}$	× 6	1.918(2)	1.893	Ge(4)-O(5)		1.732(2)	1.735
$\langle \text{Ge}(1)-\text{O} \rangle$		1.918	1.893	$\langle \text{Ge}(4)-\text{O} \rangle$		1.752	1.756
$Ge(2)-O(4)^{II}$	$\times 3$	1.878(2)	1.878				
$O(2)-Ge(1)-O(2)^{V}$	× 6	87.1(1)	88.8 ^a	O(1)-Ge(4)-O(3)		107.3(1)	106.7^{b}
$O(2)-Ge(1)-O(2)^{VI}$	× 6	92.9(1)	91.2	O(1)-Ge(4)-O(4)		116.9(1)	115.9
$O(4) - Ge(2) - O(4)^{VII}$	$\times 3$	88.5(1)	90.9	O(1)-Ge(4)-O(5)		94.9(1)	94.4
O(4) - Ge(2) - O(5)	$\times 3$	89.5(1)	87.9	O(3)-Ge(4)-O(4)		99.1(1)	100.9
$O(4) - Ge(2) - O(5)^{V}$	$\times 3$	90.9(1)	89.7	O(3)-Ge(4)-O(5)		108.4(1)	110.4
$O(4)-Ge(2)-O(5)^{VIII}$	$\times 3$	177.9(1)	178.6	O(4) - Ge(4) - O(5)		129.1(1)	127.5
$O(5)-Ge(2)-O(5)^{V}$	$\times 3$	91.2(1)	91.6	$Ge(4) - O(1) - Ge(4)^{IX}$		122.4(2)	127.6
$O(2)-Ge(3)-O(2)^{IX}$		126.8(1)	126.8	$Ge(1)^{X}-O(2)-Ge(3)$		117.2(1)	124.4
$O(2)^{IX}-Ge(3)-O(3)$	$\times 2$	99.9(1)	103.4	Ge(3) - O(3) - Ge(4)		123.9(1)	126.5
O(2)-Ge(3)-O(3)	$\times 2$	112.7(1)	108.2	$Ge(2)^{VII}-O(4)-Ge(4)$		119.4(1)	127.7
$O(3)-Ge(3)-O(3)^{IX}$		103.1(1)	105.2	Ge(2) - O(5) - Ge(4)		125.3(1)	129.7

Note. (I) -x, -y, -z. (II) y - x, y, 1/2 + x. (III) x - y, x, -z. (IV) x, y, -1 + z. (V) -y, x - y, z. (VI) y, y - x, -z. (VII) -y, -x, 1/2 + z. (VIII) y - x, -x, z. (IX) -x, y - x, 1/2 - z. (X) x, y, 1 + z.

^aNa₂Ge₄O₉ (this study).

 ${}^{b}\mathrm{K}_{2}\mathrm{Ge}_{4}\mathrm{O}_{9}$ (4).

TABLE 3Powder X-Ray Diffraction Data for $Na_2Ge_4O_9$ from Reference (14) and Reflection Intensities Calculated with Present Structure ($CuK\alpha$)

Observed (14)		Calc	Obse	Observed (14)			
d_{hkl} (Å)	hkla	I _{rel}	I _{rel}	d_{hkl} (Å)	hkla	I _{rel}	I _{rel}
5.66	110	65	81	2.225	114	5	3
4.89	111	53	56	2.189	321	9	10
4.84	002	44	31	2.172	204	4	3
4.34	102	5	3	2.140	410	6	8
3.68	112	20	14	2.128	223	13	16
3.45	211	20	13	2.080	313	10	8
3.44	202	6	9	2.040	322	10	10
3.26	300	2	1	1.945	304	4	1
3.105	301	1		1.846	323	5	4
2.943	212	35	32	1.818	502	9	5
2.830	220	6	5	1.809	314	5	3
2.802	113	37	27	1.784	413	5	10
2.716	221	59	100	1.759	510	12	20
2.705	302	100	70	1.723	404	5	5
2.442	222	31	31	1.716	215	26	10
2.432	213	33	25	1.635	600	15	28
2.421	004	31	3	1.603	414	9	9
2.370	312	4	3	1.577	315	19	10
2.350	104	24	14	1.570	520	5	5
2.235	320	2	0				

^{*a*}*hkl* of weaker overlapped reflections and *khl* of space group $P\overline{3}c1$ not listed.

permit the amount of twist distortion required by the $A_2\text{Ge}_4\text{O}_9$ -type structure, because of the short bond distance and high bond strength of the ^[4]Si–O bond. Hence, highpressure potassium tetrasilicate adopts the wadeite structure (6), and high-pressure sodium tetrasilicate adopts a framework configuration with a nine-membered [Si₉O₂₇] ring that is collapsed to triclusters of pliable five-membered ^[4]Si–^[4]Si–^[4]Si–^[6]Si rings (7).

The size of the framework cavity in mixed tetrahedraloctahedral framework structures varies with the size of tetrahedral and octahedral cations as well as with structural topology. The known structure types for $A_2B[T_3O_9]$ silicates and germanates are summarized in Table 4. From the previous discussion, we might expect the tetrasilicates of Ag, Tl, Rb, and Cs to be stable at high pressure and have the wadeite-type structure. The wadeite-type structure is indeed favored by all of the large- monovalent-cation silicates investigated thus far. The $A_2Ge_4O_9$ -type structure is adopted by most alkali metal germanates, but the precise controls on structure type for the largest monovalent cations in the biggest frameworks $(A_2 \text{TiGe}_3 \text{O}_9 \text{ and } A_2 \text{Ti}$ Ge_3O_9) are unclear. The structure types of germanosilicate $(A_2 \text{GeSi}_3 \text{O}_9)$ and silicogermanate $(A_2 \text{SiGe}_3 \text{O}_9)$ compounds would clearly be of great interest.

Stability of Sodium Tetragermanate

Sodium tetragermanate and enneagermanate melt congruently at ~1035 and 1073°C, respectively (15). The temperature of the glass transiition (T_g) for the composition Na₂Ge₄O₉ is 520°C (24).

Sodium enneagermanate formed in all but one of the present experiments to anneal glass of composition $Na_2Ge_4O_9$, in agreement with references (10, 13, 17), but was not observed to crystallize directly from supercooled melt. Sodium enneagermanate also forms by transformation of sodium tetragermanate, in agreement with reference (10). Our experiments at 700°C are particularly significant since they demonstrate that sodium tetragermanate transforms to the enneagermanate both in air and 2 kbar $P(H_2O)$. On the other hand, sodium tetragermanate consistently formed in melts that were either supercooled to 700°C, in agreement with references (12, 16), or momentarily cooled from 800°C and further annealed at this temperature. Sodium tetragermanate coexisted with sodium enneagermanate, with the tetragermanate dominant, when glass was annealed at 800°C for 2 min, but the enneagermanate appeared alone in a second experiment annealed for 2.5 min. These results confirm that sodium tetragermanate is metastable at all temperatures to the solidus and pressures up to 2 kbar, in agreement with reference (15); the stable assemblage being sodium enneagermanate plus a more sodic phase (e.g., Na_2GeO_3 ; 17). We speculate that sodium tetragermanate nucleates only in supercooled melts (i.e., above T_{σ}), whereas sodium enneagermanate nucleates from the vitreous state, by transformation of sodium tetragermanates, and from molten salts and aqueous fluids. Crystallization of sodium

 TABLE 4

 Structure Types of A₂B[T₃O₉] Silicates and Germanates

				В				
	A		Т	Si (0.400)	Ge (0.540)	Ti (0.605)	Sn (0.69)	Zr (0.72)
Na	(1.18)	Si	(0.26)	S(HP)				
		Ge	(0.40)		А			
Ag	(1.28)	Si	(0.26)					
		Ge	(0.40)		А			
Κ	(1.46)	Si	(0.26)	W(HP)		W	W	W
		Ge	(0.40)		А	А	Α	
T1	(1.59)	Si	(0.26)					
		Ge	(0.40)			W	Α	
Rb	(1.60)	Si	(0.26)			W	W	
		Ge	(0.40)		А	А	Α	
Cs	(1.74)	Si	(0.26)					
		Ge	(0.40)			W	W	

Note. Effective ionic radii (in parentheses; Å) from Ref. (23). Structure types: $S-Na_2Si_4O_9$; W-wadeite; $A-A_2Ge_4O_9$. HP is high pressure.

FIG. 4. Relationship of three-membered $[Ge_3O_9]$ ring unit to the GeO₆ octahedron in (a) wadeite-type structure, [010] projection, showing *c*-axis column formed from the GeO₆ octahedron and interspersed unoccupied trigonal prism that results in a near-ideal ring geometry, and (b) $A_2Ge_4O_9$ -type structure of Na₂Ge₄O₉, [120] projection, showing *c*-axis column formed from the GeO₆ octahedron and interspersed unoccupied trigonal prism that results in a near-ideal ring geometry, and (b) $A_2Ge_4O_9$ -type structure of Na₂Ge₄O₉, [120] projection, showing *c*-axis column formed from the GeO₆ octahedron and interspersed unoccupied octahedron that results in a twisted ring geometry.

enneagermanate by very slow cooling of melts in air to $600-700^{\circ}$ C (12, 16) is consistent with this reconstruction, since in this procedure sodium enneagermanate likely forms by transformation of preexisting sodium tetragermanate.

The pressure stabilities of sodium tetragermanate and enneagermanate have not been extensively investigated and may be of interest because the tetragermanate is the denser phase; e.g., $D_x = 4.45$ and 4.24 g cm^{-3} , respectively. This is surprising, since the enneagermanate has greater proportions of both GeO₂ and octahedral Ge; the ratio of $^{[6]}\text{Ge}:^{[4]}\text{Ge}$ being 1:3 in the tetragermanate and 4:5 in the enneagermanate. Evidently, the spiral $[\text{Ge}_4\text{O}_{12}]_n$ chain contributes significant low-packing density to the enneagermanate structure. However, this spiral chain is likely to be relatively compressible. Thus, sodium enneagermanate at pressures greatly in excess of the 2 kbar limit presently investigated.

ACKNOWLEDGMENTS

We thank Y. Thibeau for assistance with X-ray powder diffraction and the Natural Sciences and Engineering Research Council of Canada for financial support.

REFERENCES

1. L. W. Finger and R. M. Hazen, Acta Crystallogr. Sect. B 47, 561 (1991).

- 2. M. E. Fleet and G. S. Henderson, Phys. Chem. Mineral. 24, 345 (1997).
- 3. D.E. Henshaw, Mineral. Mag. 30, 585 (1955).
- 4. H. Völlenkle and A. Wittmann, Monatsh. Chem. 102, 1245 (1971).
- J. Choisnet, A. Deschanvres, and B. Raveau, J. Solid State Chem. 7, 408 (1973).
- 6. D. K. Swanson and C. T. Prewitt, Am. Mineral. 68, 581 (1983).
- 7. M. E. Fleet, Am. Mineral. 81, 1105 (1996).
- 8. A. Wittmann and E. Modern, Monatsh. Chem. 96, 581 (1965).
- 9. H. Völlenkle, A. Wittmann, and H. Nowotny, *Monatsh. Chem.* **100**, 79 (1969).
- 10. H. Nowotny and A. Wittmann, Monatsh. Chem. 85, 558 (1954).
- J. F. White, E. R. Shaw, J. F. Corwin, and A. Pabst, *Anal. Chem.* 31, 315 (1959).
- A. Wittmann and P. Papamantellos, Monatsh. Chem. 91, 855 (1960).
- 13. M. K. Murthy and J. Aguayo, J. Am. Ceram. Soc. 47, 444 (1964).
- 14. J. H. Jolly and R.L. Myklebust, Acta Crystallogr. Sect. B 24, 460 (1968).
- 15. B. Monnaye and R. Bouaziz, C. R. Acad. Sci. Ser. C 271, 1581 (1970).
- S. Sakka, K. Kamiya, and T. Mizuno, "Res. Rept. Fac. Eng., Mie Univ., Japan," pp. 73–86, 1977.
- C. I. Ajuwa, A. Mayer, and W. Zednicek, J. Mater. Sci. Lett. 12, 1214 (1993).
- G. Eulenberger, A. Wittmann, and H. Nowotny, *Monatsh. Chem.* 93, 123 (1962).
- 19. N. Ingri and G. Lundgren, Acta Chem. Scand. 17, 617 (1963).
- 20. M. E. Fleet, Acta Crystallogr. Sect. C 46, 1202 (1990).
- E. R. Shaw, J. F. Corwin, and J.W. Edwards, J. Am. Chem. Soc. 80, 1536 (1958).
- J. A. Ibers and W. C. Hamilton (Eds.), "International Tables for X-Ray Crystallography," Vol. IV. Kynoch Press, Birmingham, UK, 1974.
- 23. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).
- 24. O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-Shvaikovskaya, "Handbook of Glass Data," Part B. Elsevier, Amsterdam, 1985.